e therapeutics

## Computing the Future of Medicine

Is Drug Discovery a Data Science Problem?

## Legal Disclaimer

## Forward looking statement

This document is being provided for the sole purpose of providing the recipients with background information about the business of e-therapeutics plc (the Company).

The information, statements and opinions contained in this document do not constitute a public offer under any applicable legislation or an offer to sell or solicitation of any offer to buy any securities or financial instruments or any advice or recommendation with respect to such securities or other financial instruments.

This document contains forward-looking statements including (without limitation) statements containing the words "believes", "expects", "estimates", "intends", "may", "plan", "will" and similar expressions (including the negative of those expressions). Forward-looking statements involve unknown risks, uncertainties and other factors which may cause the actual results, financial condition, performance or achievements of the Company, or industry results, to be materially different from any future results, performance or achievements expressed or implied by those forward-looking statements. Given these uncertainties, you are cautioned not to place any undue reliance on those forward-looking statements. The forward-looking statements contained in this document are made on the date of this document. The Company and its directors are not under any obligation to update those forward-looking statements in this document to reflect actual future events or developments.

This document (including the information in this disclaimer) does not constitute an offer, invitation or recommendation to subscribe for or purchase any security. Neither the document, this disclaimer nor anything contained in them forms the basis of any contract or commitment. No representation or warranty, express or implied, is or will be made in relation to the accuracy or completeness of the information in this document and all and such responsibility and liability is expressly disclaimed.

This document shall not exclude any liability for, or remedy in respect of, fraudulent misrepresentation.

## GalOmic - ETX RNA Drug Platform



## ETX RNA Drug Platform: Information Molecules

## RNA drugs are a form of computation



1 We know the DNA sequence of hepatocytes, and the corresponding mRNA code for all genes

2
Design complementary 'anti-code’ siRNA sequences, opposite to a region of the mRNA code

We deliver siRNAs to hepatocytes using GalNAc to trigger the natural intracellular interference process

4 The cell silences the expression of the target disease-associated gene (no protein made)

## GalOmic: ETX RNAi Platform

## Novel target prosecution at pace and with a patient-friendly profile

Management team has $>10$-year track record and scientific experience in RNAi therapeutics

- We can inhibit any gene in hepatocytes
- Commercial stage modality, with 5 approved drugs
- Powerful, validated technology: highly specific, well tolerated, long duration of action, subcutaneous administration
- Generated data demonstrating at least equivalent performance to market lead across multiple genes
- 17 patent applications filed to protect novel GalOmic platform and target inventions

Typical performance profile of our RNA platform


We go from gene target selection to in vivo dose response experiments in 6 months, costing only $\sim £ 500,000$

## mAbs History as Precedent of new Therapeutic Modality

Monoclonal antibodies are now established as a drug class

$100^{\text {th }} \mathrm{mAb}$ product approved by the FDA in May 2021
mAb market estimated to reach \$300B in 2025

Limitations: extracellular targets only, duration of action


Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci Jan 2020

## HepNet: Our Computational Biology Platform

Which gene, in which disease?

Therapeutic pipeline

## Hepatocyte Biology - A Central Trafficking System

| Hepatocyte <br> associated <br> disease areas |
| :---: |
| Cardiovascular |
| Metabolic |
| Diabetes |
| Haematology |
| Obesity |
| NASH |
| Renal |
| Rare |
| Other |



[^0]High Degree of Overlap in Competitive Landscape
Multiple players are targeting obvious liver-expressed genes

| Hepatocyte Genes | HBV | LP(a) | AAT | PCSK9 | TTR | HSD | XDH | C3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 Alnylam |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\cdots$ |
| Dicerna <br> acquired by Novo Nordisk for \$3.3bn) | $X$ |  |  |  |  |  |  |  |
| p- SILENCE |  |  |  |  |  |  |  |  |
| 10N/S* |  |  |  |  | $N$ |  |  |  |

## Modelling Biology In A Computer: Clotting Cascade



Directed biological process network model
Directed network containing 100 nodes constructed using ETX proprietary interactome which includes directed interactions from NLP and curated pathway data.

Target identification using KPA on the network model Top ranked proteins using the KPA approach. Triage of the top decile led to the identification of two RNAi targets and selection for evaluation (magenta arrows)

## HepNet: a Centralised 'Google for Hepatocytes'

A discovery resource and engine for target ID, under a user-friendly GUI (in progress)


## A Highly Differentiated Pipeline of RNAi Candidates

We are prosecuting several preclinical candidates drugging our novel targets


## ETX Powered by Generative AI

## How do Generative AI Models work?

In simple terms, they predict the next word...
$\longrightarrow$ LaMDA $\simeq$ GPT-3 $\simeq$ Gopher $\simeq$ Chinchilla $\simeq$ PaLM $===$ Random








How do emergent properties arise?

$$
\begin{aligned}
& \text { "Emergent properties are a necessary } \\
& \text { result of the task of predicing the next } \\
& \text { word as in order to perform that prediction } \\
& \text { task more perfectly, a machine must derive } \\
& \text { an understandino of the reality described } \\
& \text { in the various materials used in training." } \\
& \text { lya Sutskever, Chief Scientist at OpenAl }
\end{aligned}
$$

## Integration of Generative AI

Further evolving HepNet with creation of ETX specialist agents


## Adding AI Language Capability Not a ChatBot

## HepNet ${ }^{\text {TM }}$ <br> 

## ETX Specialist 'AI Agents’

Impact of LLM addition Allows ETX AI Agents To:

"Understand"<br>"Reason"<br>"Infer"<br>Code/Self Code<br>Access the Internet

Fine-tuned to our business, projects and processes

Trained with hepatocyte-specific data
Trained with siRNA sequences/constructs

Trained on all relevant scientific papers

## ETX Powered by Generative AI - Use Cases



## Use Case: HepNet Powered by Generative AI <br> An 'intelligent' System

HepNet 'Google' for Hepatocytes
Inputs:
Limitations:

- Data
- Search heavy
- Network analytics
- Limited NLP


Inputs:

- Any data capability:
- Any format
- Understanding
- Reasoning
- Inference
- Ability to invent
- Automation


## Use Case: Unstructured Data Patent Mining

To extract, analyse and formulate a patent strategy that accounts for all 400,000 RNAi-related patents from 2001


|  | Old Approach | ETX Al Patent Agent |
| :---: | :---: | :---: |
| Extract and store all relevant patents | +++ | $\checkmark$ |
| Summarise and categorise patents | + | $\checkmark$ |
| Extract all sequences, constructs and performance | ++ | $\checkmark$ |
| Cross-talk with HepNet | + | $\checkmark$ |
| Understand the syntax of patent documents | Manual | $\checkmark$ |
| Find gaps for FTO and new IP | Manual | $\checkmark$ |
| Find new learnings to infer new information | Manual | $\checkmark$ |
| Find patents in other drug modalities relevant to our targets | Manual | $V$ |
| Write new patent applications | Manual | $\checkmark$ |

## Use Case: Is There A Secret Language in Genetic Sequences?

CCCCGCAGCGCCGGAGTCAAAGCCGGTTCCCGGCCCAGTCCCGTCCTGCAGCAGTCTGCCTCCTCTTTCAACATGACAGA TGCCGCTGTGTCCTTCGCCAAGGACTTCCTGGCAGGTGGAGTGGCCGCAGCCATCTCCAAGACGGCGGTAGCGCCCATCG AGCGGGTCAAGCTGCTGCTGCAGGTGCAGCATGCCAGCAAGCAGATCACTGCAGATAAGCAATACAAAGGCATTATAGAC TGCGTGGTCCGTATTCCCAAGGAGCAGGGAGTTCTGTCCTTCTGGCGCGGTAACCTGGCCAATGTCATCAGATACTTCCC CACCCAGGCTCTTAACTTCGCCTTCAAAGATAAATACAAGCAGATCTTCCTGGGTGGTGTGGACAAGAGAACCCAGTTTT GGCTCTACTTTGCAGGGAATCTGGCATCGGGTGGTGCCGCAGGGGCCACATCCCTGTGTTTTGTGTACCCTCTTGATTTT GGCTCTACTTTGCAGGGAATCTGGCATCGGGTGGTGCCGCAGGGGCCACATCCCTGTGTTTTGTGTACCCTCTTGAT1 GCCCGTACCCGTCTAGCAGCTGATGTGGGTAAAGCTGGAGCTGAAAGGGAATTCCGAGGCCTCGGTGACTGCCTGGTTAA GATCTACAAATCTGATGGGATTAAGGGCCTGTACCAAGGCTTTAACGTGTCTGTGCAGGGTATTATCATCTACCGAGCCG CCTACTTCGGTATCTATGACACTGCAAAGGGAATGCTTCCGGATCCCAAGAACACTCACATCGTCATCAGCTGGATGAM GCGCAAAGGAACTGACATCATGTACACAGGCACGCTTGACTGCTGGCGGAAGATTGCTCGTGATGAAGGAGGCAAAGCTT TTTTCAAGGGTGCATGGTCCAATGTTCTCAGAGGCATGGGTGGTGCTTTTGTGCTTGTCTTGTATGATGAAATCAAGAAG TACACATAAGTTATTTCCTAGGATTTTTCCCCCTGTGAACAGGCATGTTGTATTATATAACATATCTTGAGCATTCTTGA CAGACTCCTGGCTGTCAGTTTCTCAGTGGCAACTATTTACTGGTTGAAAATGGGAAGCAATAATATTCATCTGACCAGTT TTCTCTTAAAGCCATTTCCATGATGATGATGATGGGACTCAATTGTATTTTTTATTTCAGTCACTCCTGATAAATAACAA ATTTGGAGAAATAAAAATATCTAAAATAAATTTTTGTCTGCAGTATATTTTCATATAAAAATGCATATTTGAGTGCTACAT TCGAATAAATACTACCTTTTTTAGTGAA


3D view of gene

## Can we design \& predict the activity of our drug computationally?

## Use Case: ETX RNA AI Agent

Is there a secret language in genetic sequences?
Aim: To treat mRNA sequences as a language and predict siRNA efficacy in downstream tasks
(1) Pre-Training Model to understand mRNA structure

## AGGCUAGUC<MASK>UCAG<MASK>UCCA



AGGCUAGUCUUCAGCUCCA
(2) Downstream task to make siRNA efficacy predictions using mRNA structure knowledge
mRNA: AGGCUAGUCUUCAGCUCCA siRNA: UCCGAUCAGA


Efficacy: 0.75

## Fully Computational siRNA Drug Design

## ETX siRNA designR

- Proprietary deep learning algorithm for predicting siRNA efficacy
- Ranks siRNAs to minimise, and potentially eliminate, in vitro screening
- Can currently accurately predic (ranked by knockdown efficacy)
- Working on enhancing predictive performance using large language (transformer) models to represent information of RNA sequences


## Validated using ETX designs



Classification Performance Metrics
Strong performance classifying siRNAs
as active vs inactive (AUC : 0.952)

|  | Current <br> Approach | ETX <br> RNAi Agent |
| ---: | :---: | :---: |
| Number of siRNA screened | Up to 400 | $<10$ |
| Time to lead identification <br> (potential clinical candidate) | 6 months | 1 month |
| Cost of screening | $£ 500,000$ | $£ 50,000$ |

## A Unique Generalisable Model for Drug Discovery

Significant reduction in wet lab work \& even clinical trials

e therapeutics


[^0]:    Please note numbers are derived from ETX proprietary curation and analysis of public 'omics data, proprietary data derived from NLP processing of literature and network-aware ML-driven analysis of curated pathway data

